Answer:
Present Value | Years | Interest Rate | Future Value | |||||||||||
$ | 300 | 14.14 | 10 | % | $ | 1,155 | ||||||||
1,991 | 8.23 | 8 | 3,750 | |||||||||||
32,905 | 20.18 | 13 | 387,620 | |||||||||||
32,600 | 9.94 | 20 | 199,724 | |||||||||||
In this sum we have been provided with the prasent value,interest rate and future value what we need is to calculate the period
FV = PV(1 + r)t |
Solving for t, we get: |
t = ln(FV / PV) / ln(1 + r) |
FV = $1,155 = $ 300(1.10)t
t = ln($1,155/ $300) / ln(1.10)
Solving this equation we will get
Time =14.14 years
FV = $3750 = $ 1991(1.08)t
t = ln($3750/1991) / ln(1.08)
Solving this equation we will get
Time =8.23 years
FV = $387620 = $ 32905(1.13)t
t = ln($387620/329056) / ln(1.13)
Solving this equation we will get
Time =20.18 years
FV = $199724 = $ 32600(1.20)t
t = ln($199724/32600) / ln(1.20)
Solving this equation we will get
Time =9.94 years